1. Use an exponential model to answer the following questions.

a) A population of 500 fruit flies increases at an annual rate of 40%. How many are there after 3 years?

b) Bailey buys a car for \$23,000. The car depreciates in value 18% per year. How much will it be worth in 7 years?

2. Use the formula $A = P(1 + \frac{r}{n})^{nt}$ or $A = Pe^{rt}$ to answer the following questions...

a) Sal invests \$6,000 in an account that pays 3.5%. The account is compounded monthly. How much will be in his account in 5 years?

b) Mia invests \$10,000 in an account that pays 4.75%. The account is compounded weekly. How much will be in her account in 12 years?

c) Bryan invests \$5,000 in an account that pays 9.25%. The account is compounded continuously. How much will be in his account in 35 years?

3. Write the inverse function for the following.

a)	$y = 4^x$	b)	$y = e^x$	C)	$y = log_5 x$
----	-----------	----	-----------	----	---------------

4. a)	Evaluate the follo $log_3 81$	wing. b) $log_4 2$	c) <i>log</i> ₅ 125	d) $log_{3\frac{1}{27}}$	e) $log_{\frac{1}{7}}49$
f)	log ₂ 8	g) <i>log</i> ₄ 64	h) $log_{6\frac{1}{36}}$	i) <i>log</i> ₆₄ 8	j) ln <i>ln</i> 1
k)	$log_7 7^5$	I) $log_{\pi}\pi^4$	m) $\ln \ln e^2$	n) <i>log</i> ₂₇ 3	o) $log_{64}4$

Condense the following expression into one logarithmic expression.

5.
$$\log_5 8 - \log_5 12$$
 6. $\log_b x + \log_b 4$ 7. $2\log_5 + 4\log_x$ 8. $3\log_b x - 5\log_b y$

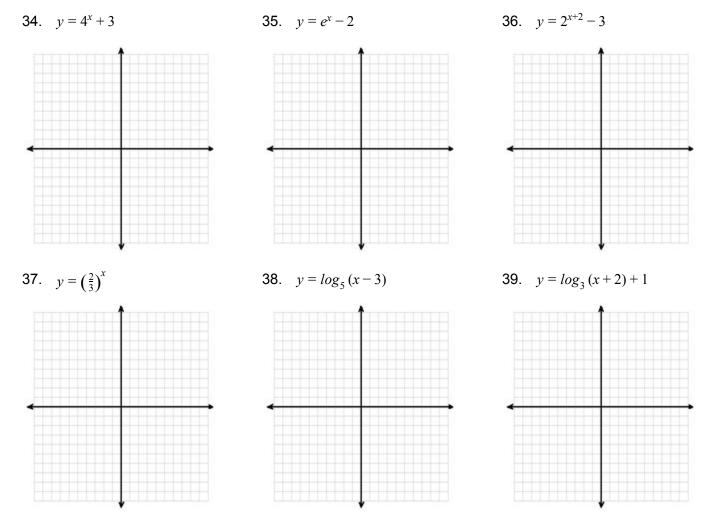
9.
$$5\log_7 x - 2\log_7 x$$
 10. $\log 20 + 2\log \frac{1}{2} + \log x$ 11. $2\ln x - 3\ln y - \ln z$ 12. $\frac{1}{2}\log x + \frac{1}{3}\log y - 2\log z$

Expand the following expressions.

- **13.** $\log_2 9x$ **14.** $\log 4x^2$ **15.** $\log_6 x^6$ **16.** $\frac{\log \frac{2x}{y}}{y}$
- **17.** $\log 6x^3 yz^2$ **18.** $\log \sqrt{x}$ **19.** $\log_b \frac{3x^2}{yz^3}$

20. Rewrite the following values using the change of base formula: a. log_752 b. log_375

Solve the following equations:


21. $3^{2x} = 40$ **22.** $7^{x} + 18 = 98$ **23.** $4^{x+3} + 2 = 70$ **24.** $e^{x} - 25 = 100$

25.
$$14\log_{36}(x-1)-3=4$$
 26. $\log_5(x-3)+8=6$ **27.** $6\log_{25}(x+2)+5=8$

31.
$$81^{3x} = 27^{x+2}$$
 32. $\frac{1}{25}^{x+3} = 125^{x+2}$ **33.** $64^x = 16^{2x+1}$

Sketch the following functions. Include the asymptote the locator point.

